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Main theorem

Theorem (P.–Tradler, in progress)
A slide complex of short-branched trees is a decomposition of the Stasheff
quotient of an assocoipahedron of directed planar trees.
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Main theorem

Theorem (P.–Tradler)
A slide complex of spaces of short-branched trees is a decomposition of the
Stasheff quotient of an assocoipahedron of directed planar trees.
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Theorem (P.–Tradler, in progress)
A slide complex of short-branched trees is a decomposition of the Stasheff
quotient of an assocoipahedron of directed planar trees.
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Background



The Goldman Bracket

Fix an oriented surface ⌃. space space space space space space space
space space space space space space space space space space space
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The Goldman Bracket

Consider two free homotopy classes ↵ and � of closed curves on ⌃. space
space space space space space space space space space

 α

β
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The Goldman Bracket

Consider representative curves that intersect one another only in transverse
double points p.

 α

βp
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The Goldman Bracket

Cut ↵ and � at p and reconnect the strands in the other way that respects their
orientation.

 α

β
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The Goldman Bracket

Let ↵ ·p � be the closed curve obtained by cutting and reconnecting. space
space space space space space space space space space space

 α p β
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The Goldman Bracket
Each intersection point p of ↵ and � gives a free homotopy class of closed
curves ↵ ·p �.

Let H be the Q-vector space generated by the set of free homotopy classes of
closed curves on ⌃. (In general, H is infinite dimensional.)

Define
[↵,�] =

X

p2↵\�

±↵ ·p �.

Signs depend on the orientation of ⌃
 α
β

p

-
 α
βp

+

 α p β α q β

–
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The Goldman Bracket

Definition (Goldman Bracket)

Extend [ , ] linearly to obtain a map [ , ] : H ⌦ H ! H.

Theorem (Goldman)
The bracket is well defined and gives H the structure of a Lie algebra.

Idea of proof of Jacobi identity: terms cancel in pairs.
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The Goldman Bracket

The Goldman bracket [ , ] : H ⊗H → H extends to surfaces with boundary.

Theorem (Gadgil 2011)
Let f : Σ → Σ′ be a homotopy equivalence of surfaces with boundary. Then
f is homotopic to a homeomorphism if and only if it respects the Goldman
bracket.



String bracket

Let M be a closed, oriented d-dimensional manifold.
Let d = 3.
Let

H0 be the Q-vector space generated by free homotopy classes of loops in
M.

H1 be the Q-vector space generated by homotopy classes of fibered tori
in M.
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String bracket

Intersections

H0 ⌦ H1 ! H0
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String bracket

Intersections

H0 ⌦ H1 ! H0 H1 ⌦ H1 ! H1
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String bracket

The string bracket for d-dimensional manifolds M is defined analogously.

Theorem (Chas-Sullivan)

Let M be a closed, oriented d-dimensional manifold, let LM = Maps(S
1, M)

be its free loop space and let H
S

1

⇤ (LM) be the S
1
-equivariant homology of LM.

Then the string bracket gives H
S

1

⇤ (LM) the structure of a graded Lie algebra.

When d = 2 and ⇤ = 0, then the string bracket coincides with the Goldman

bracket.
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In the beginning...

Theorem (Chas–Sullivan 1999)
Let M be an oriented manifold and let LM = Maps(S1,M) be its free loop
space. The loop product on singular homology H∗(LM) is commutative.

(The loop product is used to define the string bracket.)

Theorem (Gerstenhaber 1963 )
Let A be an associative algebra. The cup product on Hochschild
cohomology HH∗(A) is commutative.

Theorem (Cohen–Jones 2002)
Let C∗(M) be the cochain algebra of a simply connected, oriented manifold
M . There is an isomorphism H∗(LM)

∼−→ HH∗(C∗(M)) respecting these
products.



Since then...

Well actually...
(Abbaspour, Chas, Chataur, Cohen, Costello, Felix, Gerstenhaber, Godin,
Kaufmann, McClure, Merkulov, Rivera, Smith, Sullivan, Tamarkin, Tomas,
Tradler, Vallette, Voronov, Wahl, Westerland, Zeinalian, etc, etc...)

• There are much richer algebraic structures on the loop space side and
on the Hochschild side (paths, loops, and strings; cyclic and non-cyclic
versions)

H⊗k → H⊗ℓ



String topology operations

Cutting and reconnecting at intersection points yields generalized operations

H
⌦k ! H

⌦`.
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String topology operations

inputs

outputs

Cutting and reconnecting at intersection points yields generalized operations

H
⌦k ! H

⌦`.
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inputs

outputs

Cutting and reconnecting at intersection points yields generalized operations

H
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String topology operations

Well actually...
(Abbaspour, Chas, Chataur, Cohen, Costello, Felix, Gerstenhaber, Godin,
Kaufmann, McClure, Merkulov, Rivera, Smith, Sullivan, Tamarkin, Tomas,
Tradler, Vallette, Voronov, Wahl, Westerland, Zeinalian, etc, etc...)

• There are much richer algebraic structures on the loop space side and
on the Hochschild side (paths and strings; cyclic and non-cyclic
versions)

H⊗k → H⊗ℓ

• It is better to look for invariants at the chain level than at the homology
level

C⊗k → C⊗ℓ

A (vague) motivating question
What is the “best” algebraic structure that is “preserved” under such an
isomorphism

H∗(LM)
∼−→ HH∗(C∗(M))?



Relevant examples

Theorem (Drummond-Cole–P.–Rounds)
Let M be a closed, oriented manifold and let LM be its free loop space.

• The space of string diagrams SD parametrizes chain-level string
topology operations

C∗(SD) −→
∏
k,ℓ

Hom(C∗(LM)⊗k, C∗(LM)⊗ℓ).

• The homology H∗(SD) has the structure of a properad and H∗(LM) is
an algebra over this properad (in progress).

Theorem (Tradler–Zeinalian)
Let A be a V(d)

∞ -algebra and let CH∗(A) be its Hochschild cochain complex.
• The chain complex of directed graphs DG∗ parametrizes algebraic string
operations

DG∗ −→
∏
k,ℓ

Hom(CH∗(A)⊗k, CH∗(A)⊗ℓ).

• The chain complex DG∗ has the structure of a properad and CH∗(A) is
an algebra over this properad.
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Relevant examples

Theorem (Drummond-Cole–P.–Rounds)
Let M be a closed, oriented manifold and let LM be its free loop space.

• The space of string diagrams SD parametrizes chain-level string
topology operations

C∗(SD) −→
∏
k,ℓ

Hom(C∗(LM)⊗k, C∗(LM)⊗ℓ).

• The homology H∗(SD) has the structure of a properad and H∗(LM) is
an algebra over this properad (in progress).

Theorem (Tradler–Zeinalian)
Let A be a V(d)

∞ -algebra and let CH∗(A) be its Hochschild cochain complex.
• The chain complex of directed graphs DG∗ parametrizes algebraic string
operations

DG∗ −→
∏
k,ℓ

Hom(CH∗(A)⊗k, CH∗(A)⊗ℓ).

• The chain complex DG∗ has the structure of a properad and CH∗(A) is
an algebra over this properad.



Definition debt

Theorem (P.–Tradler, in progress)
A slide complex of short-branched trees is a decomposition of the Stasheff
quotient of an assocoipahedron.

Loop space definitions

(1) short-branched trees
(2) string diagrams SD
(3) space of short-branched trees
(4) slide complex

Hochschild definitions

(0′) V(d)
∞ -algebra

(1′) directed planar trees
(2′) directed graphs DG∗

(3′) assocoipahedron
(4′) Stasheff quotient



Chapter 2
Loop space side



Chain-level operations

Assume that M is an oriented Riemannian manifold with injectivity radius ε.
A Pontriyagin-Thom construction combined with “geodesic concatenation”
produces a 2-to-1 operation

C∗(LM)⊗ C∗(LM) → C∗(LM).
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Generalizing geodesic concatenation

Would like a combinatorial object to help generalize this operation.
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Short-branched trees

Definition 1
A short-branched tree is a metric fatgraph tree such that

• its total length is one less than the number of leaves, and
• the total length of each branch is at most one less than its number of
leaves.
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Short-branched trees
Definition 1
A short-branched tree is a metric fatgraph tree such that

• its total length is one less than the number of leaves, and
• the total length of each branch is at most one less than its number of
leaves.

Proposition + Definition 3 (Drummond-Cole–P.–Rounds)
The space of short-branched structures on a fatgraph tree T is a convex
polyhedron. Faces correspond to

• lengths of edges shrinking to zero, or
• branches growing to their maximum total length (“breaking”).



Example



String diagrams
Short-branched trees are building blocks of string diagrams. They keep
track of “generalized concatenation configurations” in the loop space.

Definition 2
A string diagram is a metric fatgraph constructed from disjoint “input” circles
with a collection of short-branched trees attached inductively along their
leaves.

The space of string diagrams SD is the space of chain-level loop-space
operations

C∗(LM)⊗k → C∗(LM)⊗ℓ



Definition debt

Loop space definitions

✓(1) short-branched trees
✓(2) string diagrams SD
✓(3) space of short-branched trees

(4) slide complex

Hochschild definitions

(0′) V(d)
∞ -algebra

(1′) directed planar trees
(2′) directed graphs DG∗

(3′) assocoipahedron
(4′) Stasheff quotient



Chapter 3
Hochschild side



Directed planar trees

Definition 1′

A directed planar tree is a directed planar tree such that
• every interior vertex has at least one outgoing edge, and
• there are no bivalent vertices with one incoming and one outgoing edge.



Directed planar trees

Definition 1′

A directed planar tree is a directed planar tree such that
• every interior vertex has at least one outgoing edge, and
• there are no bivalent vertices with one incoming and one outgoing edge.

Definition
An edge expansion of a directed planar tree T is a directed planar tree from
which T is obtained by contracting interior edges.



The space of directed planar trees

.   .   .

To build a space of edge expansions of a directed planar tree, we generalize
Gelfand–Kapranov–Zelevinsky’s secondary polytope construction of the
associahedron.



The space of directed planar trees

Theorem (P.–Tradler)
The space of expansions of a directed planar tree is a polyhedron. Faces
correspond to edge expansions.

Definition 3′

The space of expansions of a directed planar tree which is a corolla is called
an assocoipahedron.

The combinatorics of the assocoipahedra determine the structure of the V(d)
∞

dioperad (Definition 0′).



Assocoipahedron example



Directed graphs

Definition 2′

A directed graph is a directed fatgraph where each vertex with exactly one
outgoing edge has at least two incoming edges.

Proposition (Tradler–Zeinalian)
Directed graphs generate a chain complex DG∗. The differential is the sum of
edge expansions.



Directed graphs

Definition 2′

A directed graph is a directed fatgraph where each vertex with exactly one
outgoing edge has at least two incoming edges.

Proposition (Tradler–Zeinalian)
Directed graphs generate a chain complex DG∗. The differential is the sum of
edge expansions.



Directed graphs

Directed planar trees are building blocks of directed graphs. They keep track
of elements of a V(d)

∞ -algebra. The chain complex of directed graphs DG∗ is
the space of algebraic string operations

CH∗(A)⊗k → CH∗(A)⊗ℓ

Corollary (P.–Tradler)
Assocoipahedra help us turn the chain complex DG∗ into a cell complex DG
whose complex of cellular chains is DG∗.



Definition debt

Loop space definitions

✓(1) short-branched trees
✓(2) string diagrams SD
✓(3) space of short-branched trees

(4) slide complex

Hochschild definitions

✓(0′) V(d)
∞ -algebra

✓(1′) directed planar trees
✓(2′) directed graphs DG∗

✓(3′) assocoipahedron
(4′) Stasheff quotient



Chapter 4: Main theorem
Loop space tree spaces versus Hochschild tree spaces



Main theorem motivation

Theorem (P.–Tradler, in progress)
A slide complex of short-branched trees is a decomposition of the Stasheff
quotient of an assocoipahedron of type (⃝⃝ · · ·⃝).

Type (⃝⃝ · · ·⃝) means that edges adjacent to leaves in the directed
planar trees are directed outward from the tree, toward the leaf.

“Corollary” (“in progress”)
There is a deformation retraction from the subcomplex NDG of DG
consisting of of directed graphs with no directed cycles onto the space of
string diagrams SD.

That is, the space of operations on C∗(LM) is (homotopy equivalent to) a
subspace of the space of operations on CH∗(A).

Question for the future: Is there a larger space parametrizing operations on
C∗(LM)?



Motivating example 1

Assocoipahedron Space of short-branched structures



Motivating example 2

Assocoipahedron Space of short-branched structures
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Motivating example 2

Assocoipahedron Space of short-branched structures



Motivating example 3

Assocoipahedron Space of short-branched structures
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Motivating example 3

Stasheff quotient Slide complex



Final definitions
Each face of an assocoipahedron is a product of assocoipahedra; some
factors may be associahedra.

Definition 4′

The Stasheff quotient of a assocoipahedron is the complex obtained by
contracting associahedron factors of faces.

Assocoipahedron Stasheff quotient



Final definitions

Different spaces of short-branched trees may be identified along common
faces. Top-dimensional cells are labeled by trivalent trees; those with a
common codimension one face differ by a Whitehead move.

Definition 4
Given a fixed set of leaves L the slide complex is the space of all
short-branched trees with L as their set of leaves.

Slide complex



Definition debt: paid off!

Loop space definitions

✓(1) short-branched trees
✓(2) string diagrams SD
✓(3) space of short-branched trees
✓(4) slide complex

Hochschild definitions

✓(0′) V(d)
∞ -algebra

✓(1′) directed planar trees
✓(2′) directed graphs DG∗

✓(3′) assocoipahedron
✓(4′) Stasheff quotient

Theorem (P.–Tradler, in progress)
A slide complex of short-branched trees is a decomposition of the Stasheff
quotient of an assocoipahedron of type (⃝⃝ · · ·⃝).

Proof involves a further decomposition of both the Stasheff quotient and the
slide complex



Epilogue
Moduli space conjecture



Moduli space of Riemann surfaces with boundary

~

Bödigheimer cells

Harmonic compactification of
moduli space of Riemann surfaces
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Moduli space of Riemann surfaces with boundary

Bödigheimer cells

(Open)
moduli space of Riemann surfaces

assocoipahedron
factors

assocoipahedron 
with identification on boundary

(decomposed in        ) 



Moduli space of Riemann surfaces with boundary

Conjecture A
The space SD of string diagrams is homotopy equivalent to the moduli
space of Riemann surfaces with boundary.

(Open)
moduli space of Riemann surfaces



Moduli space of Riemann surfaces with boundary

Conjecture A’
The space SD of string diagrams is homeomorphic to the cut-off moduli
space of Riemann surfaces with boundary.

(Cut-off)
moduli space of Riemann surfaces



Moduli space of Riemann surfaces with boundary
Recall:

“Corollary” (“in progress”)
There is a deformation retraction from the subcomplex NDG of DG
consisting of of directed graphs with no directed cycles onto the space of
string diagrams SD.

Conjecture B
The space DG of string diagrams is homeomorphic (or at least homotopy
equivalent) to the harmonic compactificataion moduli space of Riemann
surfaces with boundary.

Then:

Corollary
The cellular chains on the harmonic compacticification of moduli space may
be given the structure of a properad such that:
1. C∗(LM) is an algebra over this properad, and
2. CH∗(A) is an algebra over this properad.




